

### V11新機能紹介

### (SolidMill S 予定機能含む)

### ヨシカワメイプル株式会社 http://www.ymp.co.jp

| 本   | 社   | 06-6252-7683 |
|-----|-----|--------------|
| 名古屋 | 営業所 | 052-452-5535 |
| 東京  | 営業所 | 03-5688-8866 |

## SolidMillFX Version11 新機能

### 3軸CAM機能

- 荒加工機能 ---- 丸駒工具使用の荒加工を高速化
- 荒加工機能 ---- 高精度のホルダ干渉チェック
- 荒加工機能 ---- 初期インストールのパターンをオフセットコーナーR付きに変更

等高線仕上げ ---- 領域優先(強)の順番で加工

等高線仕上げ ---- 斜面沿いピッチ(曲線指定)

等高線仕上げ --- 傾斜逃げ機能

コーナーR部削り残し加工 --- 溝認識による面沿い部パスの抑制

コーナーR部削り残し加工 --- ペンシル加エモード

### 3Dベース2軸CAM機能

エッジ輪郭加工の複合アプローチの距離を工具直径比率で指定

3D穴加工機能 ---- ヘリカル円弧補間出力。PTN定義に新パラメータ

### 切削シミュレーション

シャンクと立壁の衝突を厳密に評価 一周円のパスチェック、切削シミュレーション表示の改善

### 2D&3D ユーザーインターエイス

2Dと3Dのツールバーを分離。2D CADツールバーを増設

ネットワークドライブへの保存時にローカルにもファイルをバックアップする機能

2D CAD印刷範囲の枠内範囲指定

枠内検出時のグラフィックスの改善

### 3D CAD機能

直方体、円柱、多角形、円錐・円錐台コマンドの改良

単純スイープ、曲線スイープの改良

ファセットボディの読み込み

#### 2D 2軸CAM機能

Z加工範囲を0.0001まで指定可能

### 2D CAD機能

角丸めコマンドを、円に対しても適用できるようにしました。 2接図形指定の円の作図コマンドで、候補の現れる順序を改善 特徴点表示の文字の大きさと間隔の設定 以下のOSに対応しています。 Windows VISTA(32,64) Windows 7(32,64) Windows 10 (32,64)

### 推奨 Windows 7(64) メモリ8GB以上

対応 する OS

| NolidMillFX_v10testのプロパティ                                                                    |  |  |  |  |
|----------------------------------------------------------------------------------------------|--|--|--|--|
| 全般 ショートカット 互換性 セキュリティ 詳細 以前のバージョン                                                            |  |  |  |  |
| プログラムが以前のバージョンの Windows では正常に動作していたのに、このバ<br>ージョンでは問題が発生する場合、以前のバージョンに合った互換モードを選択<br>してください。 |  |  |  |  |
| <u>設定の選択に関するヘルプ</u><br>互換モード                                                                 |  |  |  |  |
| <ul> <li></li></ul>                                                                          |  |  |  |  |
| 設定                                                                                           |  |  |  |  |
| 256 色で実行する 640 × 480 の経免疫で実行する                                                               |  |  |  |  |
|                                                                                              |  |  |  |  |
| √ デスクトップ コンポジションを無効にする                                                                       |  |  |  |  |
| ■ 高 DPI 設定では画面のスケーリングを無効にする                                                                  |  |  |  |  |
| 特権レベル                                                                                        |  |  |  |  |
| 管理者としてこのプログラムを実行する                                                                           |  |  |  |  |
| すべてのユーザーの設定を変更                                                                               |  |  |  |  |
| OK キャンセル 適用(A)                                                                               |  |  |  |  |

3D環境で、ウィンドウで要素選択(枠内 選択)する際の残像の問題は、以下の 方法で回避可能です。 SolidMillFXの起動ショートカット等で右ク リックし、 プロパティ>互換性>デスクトップコンポ ジションを無効にする にチェック

この場合、Windowsの個人設定にある Aero機能が無効にされます。



等高線荒取りに、「高効率オフセット」オプションを追加しました。加工条件設定の「オフセット方法」で「高効率オフセット」を選択します。ワークから一定量ずつ切り込み、不要な部分を追い込んで削り取ります。 ワークから工具底面半径(ボール工具の場合はXYピッチの半分)内側を削り取ります。また、ワークの角の削り残し部も加工します。フラット工具・ラディアス工具で、XY方向のピッチを大きくし、Z方向のピッチを

|                                                          | C オフセット<br>C オフセット<br>ビッチ: 40.0 mm(福) ・<br>最大幅: 50.0 mm(福) ・<br>トロコイド直径: 125 %(工具率) ・<br>詳細<br>従来のパス | 約20%加工<br>時間短縮                                           |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                          | 取り残しが無いようにし                                                                                          | た経路                                                      |
| 丸駒干渉チェックの設定     最大傾斜切り込み角度(A): 15.0     詳細…     ませてすな(p) | <sup>? ×</sup> 注意)丸駒を使用する<br>をします。 またモデバ                                                             | 際は、必ず「丸駒干渉チェック」の設定<br>レ形状は若干広くしておくとよい。                   |
| 工具/展面通住在(D): 1100.0   X工具率)                              | 「動画] 3D-CAM-V1<br>[データ] 3D-CAM-V                                                                     | <b>1-01-高能率オフセット.wmv</b><br>V1 <b>1-01</b> -高能率オフセット.BSC |

## 等高線荒加エーーー高精度なホルダ干渉チェック



| 工具/基本動作 加工範囲 アプローチ/エスケープ  |                               |
|---------------------------|-------------------------------|
|                           | ワーク形状                         |
| 指定方法                      | <ul> <li>(で 共通設定通り</li> </ul> |
| ○ ワーク                     |                               |
| ○ 2 点指定 点 1 X: 0.0 Y: 0.0 | 点指定                           |
| 点 2 X: 0.0 Y: 0.0         |                               |
| ○ モデル外周                   | ☞ ŋ-ウ                         |
| ○ 加工領域 加工領域の設定            |                               |
| ○ 切削面                     | ○ 指足 開始 2: 0.0 点損定            |
| エ具半径オフセット: でなし C 内側 C     | ▼ ホルダ干渉チェック(H)                |
| 数値オフセット (加算) 0.0          | □ 最初に干渉した高さで終了                |
| □ 工具接点 □ ワークと重なる部分のみ      | マージン: 0.5                     |
| 「 ストックファイルを使用(S) 小領域の無視   | 計算ステップ: 0.1 推奨値               |
| フ <mark>ァイル指定</mark>      |                               |



等高線荒加工のホルダ干渉チェック機能に 計算ステップが指定できます。 これによって従来より、高精度に干渉チェック ができます。

[動画] 3D-CAM-V11-02-高精度なホルダ干渉チェック.wmv [データ] 3D-CAM-V11-02-高精度なホルダ干渉チェック.BSC

### 等高線荒加工……工程パターンを変更 (オフセット加工で、コーナー挿入Rを指定)



初期インストールされている、上記4つのパターンで、オフセット方法> 詳細>コーナー挿入R長>ピッチの1/2 を設定しているように変更して います。オフセット切り込み時の移動がなめらかになります。

> [動画] 3D-CAM-V11-03-荒加エパターン変更.wmv [データ] 3D-CAM-V11-03-荒加エパターン変更.BSC



等高線仕上げ加工と壁面輪郭加工で、加工順の選択に「領域優先(強)」 が追加されました。「XY加工範囲」の領域指定がされている場合、完全に 加工範囲ごとに加工します。工具摩耗による段差の発生を抑えます。

[動画] 3D-CAM-V11-04-領域の優先(強).wmv [データ] 3D-CAM-V11-04-領域の優先(強).BSC

# 等高線仕上げ----斜面沿いピッチ(曲線指定)

等高線仕上げ加工と壁面輪郭加工に、「斜面沿いピッチ(曲線指定)」が追加されました。「指定」ボタンを押し、曲線(一筆書きで一本)を選択します。

| Zスライス方法(Z) ビッチ: 0.253 mm(幅) ▼ ビッチ計算: ○ 一定ビッチ ○ 斜面沿いビッチ ○ 斜面沿いビッチ(曲線指定 加工順: ○ 同一 Z 優先 ◎ 領域優先 ○ 領域優先(強) ○ 工具負荷優先 ▼ 水平部に追加 □ 往復加工 | 推定<br>指定                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 従来の斜面沿いピッチ                                                                                                                     | ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー<br>ー |

[動画] 3D-CAM-V11-05-斜面沿いピッチ(曲線指定).wmv [データ] 3D-CAM-V11-05-斜面沿いピッチ(曲線指定).BSC

# 等高線仕上げ-----傾斜逃げ機能

等高線仕上げ加工のアプローチの項目で、Z逃げ量を指 定すると、傾斜逃げができます。 下図では、左下のようなOリング形状を加工するのに、右 下のようなモデルをダミーで作成し、工具が底面に接した らすぐに傾斜で逃げ、カッターマークの発生を抑えること ができます。



●等高線仕上げで、「スパイラル加工」をONにした時も、「パス接続のリミット」が設 定できるようにしました。

傾斜逃げのパス

[動画] 3D-CAM-V11-06-等高線仕上げ傾斜逃げ.wmv [データ] 3D-CAM-V11-06-等高線仕上げ傾斜逃げ.BSC

# 削り残し部加エ----溝部の面沿いパスを抑制

前工具の入らない溝部分を検出し、パスの乱れやすい面沿いのパスを抑制するか、等高線のパスに変更します。

**溝とみなす深さ**:設定値以上の深さは溝

**満でないとみなす深さ**: 設定値以下の深さは溝とみなさない

不検出深さより深く、溝深さより浅い溝は、 開き角度で溝を判定

開き角度



**深さ**:前工具形状とモデルの関係から計 算されるため溝の深さと同等ではありま せん。





3軸CAM機能 「削り残し部(等高+面沿い)」の場合 溝検出しない 面沿いが計算された部位。危険 計算されない部位。危険 溝検出する

溝検出によって面沿い部分、パスの計算されていない箇所に等高線のパス が計算される。安全



削り残し部加工に「ペンシル加工」モードが追加されました。従来の「ペンシル加工」とは計算 方式が異なる。テーパー工具が使用可能、傾斜アプローチを指定できます。 パスをコントロールする重要な2つのパラメータのうち、計算ステップは小さいほどパスの輪 郭精度が改善しますが、計算時間は長くなります。仮想工具オフセットには、計算ステップと 同じ数値か、 0を入力することで計算ステップと同じ値とみなされます。

| · 우리 / 미 本 新 / D         |                            | C 75%           | 削り残し部加工の設定 ? ×                                                     |
|--------------------------|----------------------------|-----------------|--------------------------------------------------------------------|
| 送り/回転数(E)<br>通常切削送り: 400 | □川上方法(G)<br>○ 指定角度以上の等高線のみ | で ポール<br>C ラジアフ | - <b>市沿い加工の設定(C)</b><br>加工方向 C カット(ダウン/アップ)優先 C 一方向 C 往復           |
| □ 動作別の送りを設定              | ○ 指定角度以下の面沿いのみ             |                 | 計算ステップ(W): [0.02<br>スムージング数(S): 4 単程値 「面向目前見込み」といた [0.120 [m.//m]) |
| 送り設定                     | ○ 等高線+面沿いを角度で切替            | ット部: 0          |                                                                    |
| 回転数: 20000               | 角度: 0.0 •                  | ル部: 0.1         | 滞<                                                                 |
|                          | © ペンシル加工                   | 工具選択(O)         | 「加工面オフセット(0)」 「加工面削除(X) 仮想工具オフセット: 0.02                            |
| - データ精度(T)               | 角度: 0.0 ~ 45.0 °           | ミ出長・ホルダでパスを分割   |                                                                    |
|                          |                            | パス分割の設定         | ●奇術線/JLL/JRJをに2)<br>ビッチ計算 6 一定ビッチ ○ 斜面沿、ビッチ □ 投影補間加工(0)            |
|                          |                            | S)              | □ 水平的 G 的 10102 mm(幅) ▼                                            |
|                          |                            | 0.0             |                                                                    |
|                          |                            | 詳細              |                                                                    |
|                          |                            |                 | 「オフセット違い込み ビッチ同じ数値か、仮想工具オフセット=0                                    |
|                          |                            |                 | コーナー挿入R長 のないのを入力します                                                |
|                          |                            | 詳細()            | CK キャンセンル                                                          |
|                          |                            | 更初期状態           | 切削条件自動 切削条件保存 OK キャンセル                                             |

#### [動画] 3D-CAM-V11-08-ペンシル加エモード.wmv [データ] 3D-CAM-V11-08-ペンシル加エモード.BSC



### ●3次元曲線加工で、Tスロット工具を使用できるようになりました。

●3次元CAMの工程編集表に、工具のテーパ角度、ホルダ径(最下段の直径)、 座標系名を表示できるようになりました。

|   | テーパ角   | ホルダー        | ホルダ径   | 座標系名 |
|---|--------|-------------|--------|------|
| 1 | 12.500 | BT40-H10-60 | 36.000 | 座標系1 |
| 2 | 12.500 | BT40-H10-60 | 36.000 | 座標系1 |
| 3 |        | BT40-H10-90 | 36.000 | 座標系1 |

●ボディをすべて削除したCAMデータを、保存できるようにしました。

●ネットワークのドライブにデータを保存する場合、一旦ローカルの作業用フォルダに保存してから、ネットワークのドライブにコピーします。その際、ファイルサイズを比較して、正しくコピーできたかどうかチェックするようにします。

.iniファイルの[Customize]セクションの

- NetworkSave=0 ネットワークドライブに直接保存
- NetworkSave=1 一旦ローカルに保存。ローカルのファイルを削除

NetworkSave=2 一旦ローカルに保存。ローカルのファイルを残す

なお、「ローカルのドライブに一旦保存」の際の注意点として、保存先のファイル名が 同じならディレクトリが異なっていても、ローカルのバックアップは上書きされます。



工程で使用している工具の設定パラメータの情報が工具登録されている情報と 一致しているかどうかをチェックします。工具登録を厳密にされているお客様では 「不一致」が検出された場合、工程定義をみなおしてください。

| 作業区分設定                             |      | 出力 | 工程名                                                          | 加工パターン                 | 色 |
|------------------------------------|------|----|--------------------------------------------------------------|------------------------|---|
| 移動<br>推写                           | 1    | ON | 荒加工                                                          | 等高線                    |   |
| 削除                                 | 2    | ON | 等高線                                                          | 等高線                    |   |
|                                    | ^    | 21 |                                                              | 等高線                    |   |
| 工具設定力                              | Fェック |    |                                                              |                        |   |
| バスチェック<br>バス再計算<br>シミュレーション        |      | I  | 具設定の不整合のレポート                                                 |                        | × |
| 機械シミュレージョン<br>CL保存<br>CL読込<br>CL削除 |      |    | 上程1:上具名 BALL1<br>登録工具の内容が異なる<br>工程2:工具名 BALL2<br>登録工具の内容が異なる | (level 3)<br>(level 2) | ^ |
| <u>加工条件設定</u><br>切削条件設定<br>ユーザ変数設定 |      |    |                                                              |                        |   |
| NCチェック<br>NC浜山-ション<br>NC作成         |      |    |                                                              |                        | ~ |
|                                    |      | ſ  | -チェックオブション:                                                  |                        |   |
| 工程表データ出力                           |      |    | ○ レベル(0): 工具種別、呼                                             | び径の不一致                 |   |
|                                    |      |    | ○ レベル(1): 刃数の不一致                                             |                        |   |
| <u></u> 終了                         |      |    | <ul> <li>レベル(2): 突出し長、長利</li> <li>レベル(3): 刃長、シャンク</li> </ul> | ■類の小一致<br>7形状、ホルダの不一致  |   |
|                                    |      |    | ☑ 警告表示を行う(W)                                                 | 閉じる                    |   |



## **複合ァプローチの距離を工具直径比率で指定**

複合アプローチの距離を工具直径比率で指定できるようになりました。 これを受けて今回、2D加工のパターンを一部変更しています。機械側の径補正 を使用するパターンでは、アプローチ距離を工具直径120%、径補正を使用しな いパターンでは工具直径60%を目安として設定しています。

その他、リトラクト高さは「安全高さ」に変更しています。荒加工には0.1の残り代を設定しています。

### 例)以下のように変更しています

由 □ エッジ論部オーフラン(径補正)

| エッジ輪郭加工条件設定              |                          |                                                                                                                                                  |                                                                 |
|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 工具/基本動作 加工範囲 アプローチ/エスケーブ |                          | アプローチ・エスケープ(A)                                                                                                                                   | ◎ 安全高さ                                                          |
| Zアブローチ距離(Z): 7.0         | リトラクト(R)<br>C 高さ 50.0    | O なし O 直線 O 円弧 O 複合                                                                                                                              | C なし                                                            |
| ーアプローチ・エスケープ(A)          | <ul> <li>安全高さ</li> </ul> | アプローチ・エスケープ経路の詳細設定                                                                                                                               |                                                                 |
| ○なし ○直線 ○ 円弧 ○ 複合        |                          | € アプローチ経路                                                                                                                                        |                                                                 |
| ┌ 直線アブローチパラメーター          | 1 GU                     | 要素 No.         形状         制御機側オフセット         送り           1         直線         -         工程の言           2         直線         補正コード出力         工程の言 | 設定 道線長さ 進入角 仰角 F<br>気定通り 120% 0.00 0.00<br>发定通り 120% 45.00 0.00 |

〒 ─ エッジ 輪郭オーフ シ(曲線のサイト)

●2軸半荒取り、2軸半仕上げの加工条件設定に、「輪郭高さ・断面」ボタンを 追加しました。輪郭高さと断面形状の設定を、ここから行うことができます。

# ヘリカル加エでヘリカル円弧補間出力ほか



[動画] 3D-CAM-V11-09-ヘリカル円弧補間出力.wmv [データ] 3D-CAM-V11-09-ヘリカル円弧補間出力.BSC

3Dベース2軸CAM機能

●3次元穴加工CAMの穴のパターン定義で、工具登録された刃長のパラメータを参照できるようになりました。穴定義ファイルに、以下のように記述します。
 刃長 = GetToolEdgeLen(工具種別,工具径,タップピッチ)
 例:length = GetToolEdgeLen("DRILL", D, 0.0)

切削シミュレーション

## シャンクと立壁の衝突を厳密に評価

| シミュレーションの設定 | ×                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------|
| シミュレーション工程: | 使用CL<br>☞ 配置前OL<br>● 配置前OL<br>● 配置後OL<br>■キャンセル                                                 |
|             | 比較対象<br>○ モデル全体<br>○ 切削面が含まれる<br>全水ディ<br>○ レイヤー指定 0<br>○ 切削面のみ<br>○ なし<br>IZ 非奈元レイヤーの<br>米子でが強い |
|             | 使用ワーク<br>○ 未切削リワーク<br>○ 前回の切削結果<br>○ STLファイル                                                    |
| 全選択 全解除     | ▶ シャンクと立壁の衝突を厳密に評価                                                                              |

刃の無いシャンク部と壁との衝突を厳密に評 価できるようになりました。

▶ シャンクと立壁の衝突を厳密に評価

シャンク部と壁との衝突を検出します。

シャンク部直径に逃げがあるとみなし、衝突を検出しません。

×

**•** 

**•** 

-

-

### 円のパスチェック、切削シミュレーション表示の改善

水平(面直)アブローチ:

+を塗(高古)エフケニー・

#### パス表示設定 ▼ ワーク原点(0) - バス表示色(C) ▼ 工具原点(1) 初期表示色: ▼ 早送り(F) ▼ バスの機能別に色分けする ▼ 工具(T) □ 隠れたバスも表示(B) 早送り: □ ホルダ(H) □ レベル毎バス消去(L) 切削による早送り □ バス→括表示(P) バス間切り込み: 円弧表示精度(A): 度 Z切り込み: 円弧分割角度[分割なし=0](R): 30 度

表示停止ステップ数(S): 1

パス表示設定で円弧 分解角度を設定できる ようにしました。 特に一周円の途中経 路で工具が表示できる ようになります。

2D&3D ユーザーインターフェース

2Dと3Dのツールバーを別々に記憶

ツールバーの表示/非表示や配置位置を、2次元と3次元とで別々に記憶する ようにしました。また、2次元/3次元それぞれと切削シミュレーションで、不必 要なツールバーは、デフォルトで表示されないようにしました。これらにより、必 要ないツールバーの表示を防ぎ、作図エリアを広くすることが可能になります。



### 2D&3D ユーザーインターフェース

●3次元ミリングCAMで、「面延長エッジ」「面オフセット」設定時のプレビュー表示の色を、指定できるようになりました。「パス表示設定」の「面延長・オフセット表示 色」で指定してください。

●枠内検出時のグラフィックスのみだれが改善されました。

●操作中に、ダイアログボックスが開かない状態になることがあります。「バージョン 情報」を表示(ヘルプ→バージョン情報、またはツールバーの「?」アイコン)する と、この状態から正常な状態に復帰できるようにしました。

●2D CADの印刷範囲で、「範囲指定」が追加されました。 印刷範囲を矩形で指定します。

| 티/셴]                         |                             | ×            |
|------------------------------|-----------------------------|--------------|
| 「プリンターーーーー                   |                             |              |
| プリンタ名(N): RICOI              | H IPSIO NX750 RPCS          | ▼ プロパティ(P)   |
| 状態: 準備完了                     | 7                           |              |
| 種類: RICOH ]                  | PSIO NX750 RPCS             |              |
| 瑞町: 192.9.20<br>コメント: RPCS D | 0.32<br>river (For Windows) | □ ファイルへ出力(L) |
| -ED刷範囲                       | 印刷倍率                        | ED局培修数       |
| ○ すべて(A)                     | ○ 自動調整(F)                   | 部数(C): 1 🕂   |
|                              | :倍率(D)                      | 一部単位で印刷(0)   |
| <ul> <li>● 範囲指定(</li> </ul>  | E)                          | 1 2 2        |
|                              |                             | 1 2 3 3      |
|                              |                             | OK キャンセル     |

3D CAD機能

# 3D CADコマンドを使いやすく



3D CAD機能

●3次元モデリングの曲面を操作するコマンドで、従来はシートボディしか扱えな かった「単純スイープ」などで、ボディのフェースを扱えるようになりました。



●「無効要素の削除」コマンドを強化し、CAD操作に支障をきたす、より多くのケース に対応できるようにしました。CADのデータを健全に保つため、必要に応じてこのコ マンドを実行してください。

> [動画] 3D-CAD-V11-02-CADコマンドの改良2.wmv [データ] 3D-CAD-V11-02-CADコマンドの改良2.BSC

●CATIAから出力したIGESデータで、SHELL要素(Type 514)の読込処理を修正しました。

●楕円を含むDWGファイルを読み込むと、システムがハングアップすることがある 問題がありました。「DWG/DXFデータ入力」のダイアログボックスに「強制的バー ジョン変換」の設定を追加し、これをONにすると正しく読み込めるようにしました

●3次元モデリングに、STLファイルをボディとして読み込むことができるようになりました。読み込んだデータは、全体が1つのフェース(ファセットボ ディ)になります。

<u>現状はCAMのワーク形状や加工面としての設定に使用することはできま</u> <u>せん。表示させること、サーフェスをファセットボディに変換すること、ファ</u> セットボディ同士の面間交線を作成できるのみです。

## Z加工範囲を0.0001まで指定可能

| -切削範囲(W) C範囲自動決定                                                                                                                                                                        |                                                                                                                          |                                  |              |                          |             |                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|--------------------------|-------------|------------------------|
| Z:(工具先端)                                                                                                                                                                                | Ζ:(工具先端) -4.9999 → -15.0001 ピッチ 1.0005 最適化                                                                               |                                  |              |                          |             | □ 初期切り込み量              |
| □ オフ:                                                                                                                                                                                   | 100.0                                                                                                                    | $\rightarrow$                    | 0.0          | と <sup>9</sup> ッチ:   3.0 | PICK C PASS | C) 2ビッチ分<br>C) 指定量 0.0 |
|                                                                                                                                                                                         |                                                                                                                          |                                  |              |                          |             |                        |
| %<br>G17<br>G17G00X-3.9286<br>Z5.0001<br>G01Z-4.99999F124<br>G02X0.Y-3.0016<br>X3.9286Y0.I57.<br>X0.Y3.0016I53.<br>X-3.9286Y0.I-5<br>G01X-5.6845Y-2<br>G02X0.Y-6.9024<br>X9.2338Y0.I57. | YO.<br>0<br>I-53.2631J-7:<br>1917J-70.782<br>2631J73.7837<br>7.1917J70.78:<br>.4324F120<br>I-51.5072J-7<br>1917J-66.881: | 3.7837<br>1<br>21<br>1.3513<br>3 | F200<br>F200 |                          |             |                        |

ポスト設定で、小数点以下4桁の出力を設定しておく必要があります。 LDIM= "X5.4"; ; 長さのディメンジョン

●マクロ変数NCNAMEを使用し、NCデータにNCファイル名を出力できる ようになりました。 2D CAD部の改善をひきつづき進めています。 -------V9以降十数項目の改善により、「使い勝手」が向上しています。

### ●2D CAD部のユーザーインターフェイスの改良

[動画] 2D-CAD-V11-01-新しいユーザーインターフェイス.wmv

●角丸めコマンドを、円に対しても適用できるようにしました。

[動画] 2D-CAD-V11-02-角丸め(一周円に対応) ほか.wmv [データ] 2D-CAD-V11-02-角丸め(一周円に対応) ほか.PAR

●2接図形指定の円の作図コマンドで、候補の現れる順序を改善しました。

●特徴点表示の文字の大きさと間隔を、「システム設定」→「フォント」で設定できるようになりました。



### ヨシカワメイプル株式会社 http://www.ymp.co.jp

本 社 06-6252-7683 名古屋営業所 052-452-5535 東京 営業所 03-5688-8866